Effectiveness of recommendation algorithms on impulsive buying in e-commerce platforms: A systematic literature review
DOI:
https://doi.org/10.55942/pssj.v5i8.485Keywords:
recommendation algorithm, impulsive buying, e-commerce, consumer behaviorAbstract
This study analyzes the effectiveness of recommendation algorithms in influencing impulsive buying behavior on e-commerce platforms. Through a comprehensive review of the existing research literature, it was revealed that personalization strategies such as collaborative filtering, content-based filtering, and artificial intelligence (AI) boost impulsive buying tendencies by alleviating cognitive burdens and enhancing elements such as limited-time offers, social proof, and emotional connection. Factors such as flow experience, positive feelings, and moderating elements such as age, social media influence, and economic circumstances also play a crucial role in determining the effectiveness of these algorithms. This study provides beneficial knowledge for algorithm developers and digital marketers to refine personalization efforts and to consider psychological and contextual influences when crafting more impactful marketing strategies.
References
Alawadh, M., & Barnawi, A. (2025). Empowering Retail in the Metaverse by Leveraging Consumer Behavior Analysis for Personalized Shopping: A Pilot Study in the Saudi Market. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 63. https://doi.org/10.3390/jtaer20020063
Amin, A. (2025). Artificial intelligence in social media: a catalyst for impulse buying behavior? Young Consumers. https://doi.org/10.1108/YC-10-2024-2297
Anitasari & Zoniarti., M. (2024). Faktor yang Mempengaruhi Terjadinya Impulsive Buying Dalam Berbelanja Online di Shopee. Shopee.
Anwar, M. M. (2024). How does TAM affect impulsive buying on halal fashion products via shopping mobile apps? Journal of Islamic Marketing. https://doi.org/10.1108/jima-03-2023-0096
Arachchi, H. A. D. M., & Samarasinghe, G. D. (2023). Impulse Purchase Intention in an AI-mediated Retail Environment: Extending the TAM with Attitudes Towards Technology and Innovativeness. Global Business Review. https://doi.org/10.1177/09721509231197721
Chandrasekhar, K., Das, S., Gupta, N., & Jena, S. K. (2024). Comparative Analysis of Impulse Buying Behaviour Across Retail Channels: A Study of Physical Stores, E-commerce Websites and Mobile Shopping Apps. In Economic Affairs (New Delhi) (Vol. 69, Issue 2, pp. 1109–1120). AESSRA. https://doi.org/10.46852/0424-2513.3.2024.33
Choi, J., Lee, H. J., & Kim, H.-W. (2017). Examining The Effects Of Personalized App Recommender Systems On Purchase Intention: A Self And Social-Interaction Perspective. In Journal of Electronic Commerce Research (Vol. 18).
Cui, Y., Liu, Y., & Gu, M. (2022). Investigating the Key Drivers of Impulsive Buying Behavior in Live Streaming. Journal of Global Information Management, 30(1), 1–18. https://doi.org/10.4018/jgim.314226
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Faber, R. J. (2010). Impulsive and Compulsive Buying. https://doi.org/10.1002/9781444316568.WIEM03007
Fitrianti. (2024). Sistem Rekomendasi Pembelajaran. Jurnal Teknologi Informasi, Vol. 3 No. 1.
Hamza, E. A., & Elsantil, Y. (2024). Consumer impulsive buying: causes, consequences, and control (pp. 221–230). Elsevier BV. https://doi.org/10.1016/b978-0-443-13437-1.00010-0
Han, J. (2024). The Impact of Personalized Recommendations on Consumer Purchase Decisions on TikTok-A Case Study of College Students.
Hirschman, E. C., & Stern, B. B. (1999). The Roles of Emotion in Consumer Research.
Ittaqullah Qalbi L. S. & Isalman I., N. (2023). Gaya Hidup terhadap Perilaku Impulsive buying pada Konsumen Marketplace. https://Doi.Org/10.36709/Sublimap Si.V4i2.39127.
Jeong, J., Kim, D., Li, X., Li, Q., Choi, I., & Kim, J. (2022). An Empirical Investigation of Personalized Recommendation and Reward Effect on Customer Behavior: A Stimulus–Organism–Response (SOR) Model Perspective. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215369
Jiang, Y. (2024). Research on Network Personalized Recommendation Algorithm Based on Machine Learning. 767–771. https://doi.org/10.1109/icpics62053.2024.10796008
Juhana Komara A. T. Sidharta I. & Suzanto B., D. (2024). Pengantar E-Commerce dan Platform Digital. PT. Sonpedia Publishing Indonesia.
Karomi, S., & Purwanto, E. (2024). The influence of the technology acceptance model (tam) theory on spontaneous purchasing decisions on shopee paylater users inumenep district. Journal MISSY, 5(1), 23–33. https://doi.org/10.24929/missy.v5i1.3518
Khalid, S., Jalees, T., & Malik, K. (2018). Extending the TAM Model for Understanding Antecedents to Online Purchase Intentions. Market Forces, 13(1).
Khotimah, K., & Febriansyah. (2018). Pengaruh kemudahan penggunaan, kepercayaan konsumen & kreativitas iklan terhadap minat beli konsumen online-shop. https://ejournal.imperiuminstitute.org/index.php/JMSAB
Kotler & Keller K. L., P. (2016). Marketing Management (15th ed.). Pearson.
Kundu, S., Rayhan, Z., Faruq, O., Rahman, Md. A., & Debi, K. R. (2024). E-commerce development in Bangladesh: marketing improvement based personalized recommendation service. Информатика. Экономика. Управление - Informatics. Economics. Management, 3(4), 0218–0240. https://doi.org/10.47813/2782-5280-2024-3-4-0218-0240
Kurniawan, R. F. (2024). Sistem rekomendasi Collaborative Filtering Multi Criteria untuk rekomendasi skenario tour pada game 3d pengenalan kampus. Universitas Islam Negeri Maulana Malik Ibrahim.
Li, H., Zhang, S., Liu, F., Shi, J., Dai, H., Fan, N., Yang, Y., & Haining, L. (2019). Recommendation algorithm combining user comments and scoring information.
Marhumi. (2024). The Influence of E-Commerce on Impulsive Buying Behavior in Generation Z in Purwakarta City. Journal of Economic, Business and Accounting, 7(6), 7234–7246.
Mengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. In Science of the Total Environment (Vol. 702). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.134581
Nyrhinen, J., Sirola, A., Koskelainen, T., Munnukka, J., & Wilska, T.-A. (2023). Online antecedents for young consumers’ impulse buying behavior. Computers in Human Behavior, 153, 108129. https://doi.org/10.1016/j.chb.2023.108129
Ofem. (2024). Impulse Buying in the Age of Algorithms: A Systematic Literature Review of Psychological Triggers Leading to Buyer’s Remorse. https://doi.org/10.21203/rs.3.rs-5353669/v1
Pal, S. (2025). Impulse Buying in the Digital Age - The Influence of Personalized Ads, Recommendations, and Instant Purchasing Options. Integrated Journal for Research in Arts and Humanities, 5(2), 24–33. https://doi.org/10.55544/ijrah.5.2.5
Pati, D., & Lorusso, L. N. (2018). How to Write a Systematic Review of the Literature. Health Environments Research and Design Journal, 11(1), 15–30. https://doi.org/10.1177/1937586717747384
Patnaik, P., Kumar Patra, S., Kumar, S., & Bakkar, M. (2025). Examining the Impact of Technology-Driven Recommendations on Consumer Emotions and Intentions in Online Shopping. https://ssrn.com/abstract=5231082
Poleac, G., & Gherguț-Babii, A.-N. (2024). How social media algorithms influence the way users decide-Perspectives of social media users and practitioners. www.techniumscience.com
Purwianti, L., Ángel, & Yulianto, E. (2024). The Role of Online Purchasing Behavior and Utilitarian Value in Influencing Impulsiveness within the Framework of the Technology Acceptance Model (TAM). Sketsa Bisnis, 11(1), 138–159. https://doi.org/10.35891/jsb.v11i1.5448
Rachbini, W. (2023). Transformasi Marketing-Tradisional Ke Digital. CV. AA. Rizky.
Rook, D. W. (1987). The Buying Impulse. Journal of Consumer Research, 14(2), 189–199. https://doi.org/10.1086/209105
Roy, B., D’Souza, M. S., Bhattacharjee, S., Acharjee, P. B., Thorat, S., & Bhayani, T. (2024). Role of Artificial Intelligence in Influencing Impulsive Buying Behaviour. 1–5. https://doi.org/10.1109/tqcebt59414.2024.10545278
Schiffman & Kanuk L. L., L. G. (2010). Consumer Behavior (10th ed.). Pearson Education.
Song, M. (2023). The Impact of Algorithmic Product Recommendation on Consumers’ Impulse Purchase Intention. Frontiers in Business, Economics and Management. https://doi.org/10.54097/fbem.v11i3.13197
Swarnalatha, C., & Soundhariya, S. (2016). Impulse Purchase-An Overview. Global Journal for Research Analysis, 4(7).
Tee, W. Y., Teo, S. C., & Liew, T. W. (2023). Exploring The Tiktok Influences On Consumer Impulsive Purchase Behaviour. International Journal of Business and Society, 24(1), 39–55. https://doi.org/10.33736/ijbs.5600.2023
Van, N. T. H., & Ly, B. N. H. (2022). The impact of online sales promotion on consumers’ online impulsive buying decisions, suggestion for AI recommendation systems. Proceedings of the International Conference on Research in Management & Technovation, 34, 59–67. https://doi.org/10.15439/2022m8020
Wang, W., & Benbasat, I. (2004). Trust and TAM for Online Recommendation Agents. 244.
Yun, X., & Chun, M. H. (2024). The impact of personalized recommendation on purchase intention under the background of big data. Big Data and Information Analytics, 8(0), 80–108. https://doi.org/10.3934/bdia.2024005
Zhang, Z. (2023). Exploration of Hybrid Recommendation Algorithms for Learning Nature Software. 530–534. https://doi.org/10.1109/icdacai59742.2023.00106
Zhong-ying, L. (2008). Modeling and Empirical Research of online Trust Based on TAM.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nuriya Fadilah, Itaul Masarroh, Muhammad Alkirom Wildan

This work is licensed under a Creative Commons Attribution 4.0 International License.

